Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system.
نویسندگان
چکیده
The epithelium of the mouse vomeronasal organ (VNO) consists of apical and basal layers of neuronal cell bodies. Vomeronasal sensory neurons (VSNs) with cell bodies in the basal layer express the G-protein subunit G alpha(o) and members of the V2R superfamily of vomeronasal receptor genes and project their axons to the posterior accessory bulb (AOB). V2R(+) VSNs also express particular patterns of a family of nine nonclassical class I major histocompatibility Mhc genes, the H2-Mv genes. The function of H2-Mv molecules remains unknown. H2-Mv molecules have been reported to be associated with V2R molecules and have been proposed to participate in pheromone detection. Here, we find that a substantial fraction of V2R(+) VSNs does not express these nine H2-Mv genes. The cell bodies of H2-Mv(+) and H2-Mv(-) VSNs reside in the lower and upper sublayers of the basal layer, respectively. This spatial segregation is maintained at the level of the AOB: H2-Mv(+) and H2-Mv(-) VSNs project their axons to the posterior and anterior subdomains of the posterior AOB, respectively. By generating a C-terminal green fluorescent protein fusion protein with M10.2 in gene-targeted mice, we observe subcellular localization of M10.2 not only in dendrites but also in axons of VSNs. Our results reveal a tripartite organization of the VNO and AOB, question the generality of the requirement of these nine H2-Mv molecules for V2R surface expression, and suggest that H2-Mvs can function in both dendrites and axons.
منابع مشابه
Combinatorial Coexpression of Neural and Immune Multigene Families in Mouse Vomeronasal Sensory Neurons
The vomeronasal organ (VNO) is a chemosensory organ specialized in the detection of pheromones in higher vertebrates. In mouse and rat, two gene superfamilies, V1r and V2r vomeronasal receptor genes, are expressed in sensory neurons whose cell bodies are located in, respectively, the apical and basal layers of the VNO epithelium. Here, we report that neurons of the basal layer express another m...
متن کاملA family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons.
The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility co...
متن کاملCloning and expression of class I major histocompatibility complex genes of the rat
Little is known about the organization of class I genes in the rat although there is prima facie evidence that it is distinct from that of the mouse. We report the cloning of 61 nonclassical rat class I genes into cosmid clusters with a total mapped length of 1,264 kb. It is certain that the total number of class I genes in the rat must exceed this number. From restriction maps it is possible t...
متن کاملEvolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals.
The class I major histocompatibility complex genes are composed of classical and nonclassical genes, the latter being largely nonfunctional. To understand the evolutionary relationships of the two groups of class I genes, a phylogenetic analysis of DNA sequences was conducted using 45 genes from six mammalian and one avian species. The results indicate that nonclassical genes in one species are...
متن کاملMouse CD94/NKG2A Is a Natural Killer Cell Receptor for the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule Qa-1b
Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2008